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Adjoint shape optimization for steady free-surface �ows
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SUMMARY

Numerical solution of �ows that are partially bounded by a freely moving boundary is of great impor-
tance in practical applications such as ship hydrodynamics. Free boundary problems can be reformulated
into optimal shape design problems, which can in principle be solved e�ciently by the adjoint method.
This work examines the suitability of the adjoint shape optimization method for solving steady free-
surface �ows. It is shown that preconditioning is imperative to avoid mesh-width dependence of the
convergence behaviour. Numerical results are presented for 2D �ow over an obstacle in a channel.
Copyright ? 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The numerical solution of �ows which are partially bounded by a freely moving boundary is
of great practical importance, e.g. in ship hydrodynamics [1–3]. A practically relevant class of
free-surface �ow problems are steady free-surface �ows. An example of such a steady free-
surface �ow is the wave pattern carried by a ship at forward speed in still water. Numerical
methods for free-surface potential �ow are mature (for an overview, see Reference [4]) and
dedicated techniques have been developed for solving the steady free-surface potential-�ow
equations, e.g. Reference [5]. In contrast, methods for the steady free-surface Navier–Stokes
equations typically continue a transient process until a steady state is reached. This time
integration method is often computationally ine�cient, due to the speci�c transient behaviour
of free-surface �ows; see References [6, 7]. Alternative solution methods for the steady free-
surface Navier–Stokes equations exist. However, the performance of these methods usually
depends sensitively on the parameters in the problem, or their applicability is too restricted;
see, for instance, References [8, 9]. In Reference [6], an e�cient iterative algorithm was
presented. However, the implementation of the quasi-free-surface condition that underlies the
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e�ciency of this method can be involved. Hence, the investigation of numerical methods for
the steady free-surface Navier–Stokes equations is warranted.
A general characteristic of free-boundary problems is that the number of free-boundary

conditions is one more than the number of boundary conditions required by the governing
boundary value problem. A free-boundary problem can therefore be reformulated into the
equivalent shape optimization problem of �nding the boundary that minimizes a norm of the
residual of one of the free-surface conditions, subject to the boundary value problem with the
remaining free-surface conditions imposed.
Optimal shape design problems can in principle be solved e�ciently by means of the adjoint

method. In recent years, much progress has been made in the development of adjoint tech-
niques for problems from �uid dynamics. Applications to the Navier–Stokes equations include
�ow control (see Reference [10] and the references therein), a posteriori error-estimation and
adaptivity (for instance, Reference [11]) optimal design (e.g., Reference [12, 13]) and domain
decomposition (cf. Reference [14]). The techniques that are required to solve the optimal
shape design problem associated with steady free-surface �ow are readily available.
The present work investigates the suitability of the adjoint shape optimization method for

solving steady free-surface �ow problems. Our primary interest is in the steady free-surface
Navier–Stokes equations. However, because inviscid, irrotational �ow adequately describes the
features of free-surface �ow and to avoid the complexity of the Navier–Stokes equations, our
investigation is based on the free-surface potential �ow equations. The adjoint shape optimiza-
tion method is equally applicable to the free-surface Navier–Stokes equations, although the
speci�cs of the method are much more involved in that case. Our investigation serves as an
indication of the properties of the adjoint shape optimization method for steady free-surface
�ow problems.
The contents of the paper are organized as follows: In Section 2 the equations governing

steady free-surface potential �ow and the associated design problem are stated. Section 3
describes the adjoint optimization method. Section 4 examines the convergence behaviour
of the adjoint method and discusses preconditioning. Numerical experiments and results are
presented in Section 5. Section 6 contains concluding remarks.

2. PROBLEM STATEMENT

We consider an incompressible, inviscid �uid �ow, subject to a constant gravitational force,
acting in the negative vertical direction. The �uid occupies a domain V⊂Rd (d=2; 3) which
is bounded by a free boundary, S, and a �xed boundary @V\S. The �xed boundary can be
subdivided in an in�ow boundary, an out�ow boundary and a rigid, impermeable boundary.
The (non-dimensionalized) �uid velocity and pressure are identi�ed by v(x) and p(x),

respectively. Assuming that the velocity-�eld is irrotational, a velocity-potential �(x) exists
such that v=∇�. Incompressibility implies that the velocity-potential satis�es. The Laplace
equation:

��=0; x∈V (1)

Assuming that |∇�|=1 at the in�ow boundary, Bernoulli’s equation relates the pressure to
the velocity-potential as

p(x)= 1
2 − ( 12 |∇�|2 + Fr−2xd) (2)
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with xd the vertical co-ordinate and Fr the Froude number, de�ned by Fr ≡ V=
√
gL with V

an appropriate reference velocity, g the gravitational acceleration and L an assigned reference
length.
The free-surface conditions prescribe that the free-surface is impermeable and that the

pressure vanishes at the free-surface:

n ·∇�=0; x∈S (3a)

p=0; x∈S (3b)

with n(x) the unit normal vector to S. Conditions (3a) and (3b) are referred to as the
kinematic condition and the dynamic condition, respectively. A single appropriate boundary
condition must be speci�ed at the �xed boundary. We assume that this condition is of the
form:

an ·∇�+ b�= c; x∈@V\S (4)

for certain functions a; b; c : @V\S �→R.
The steady free-surface �ow problem under consideration is the problem of �nding S

and � such that � satis�es (1)–(4). Several issues relate to well-posedness of this problem.
Firstly, arbitrary non-physical upstream can impair uniqueness. These waves must be removed
by a radiation condition; cf. for instance, References [15, 16]. In numerical computations,
this radiation condition can be conveniently enforced by introducing arti�cial damping (see
Section 5) or by selecting a suitable discretization (see Reference [5]). Secondly, a physically
meaningful solution can be non-existent, as the transient problem underlying (1)–(4) does
not necessarily approach a steady state as time progresses ad in�nitum; see Reference [7].
To obtain an optimal-shape design formulation of the steady free-surface �ow problem, the

cost functional E is de�ned by

E(S; �)=
∫
S

1
2p(x)

2 dx (5)

and the constraint C is de�ned by the boundary value problem (1), (3a) and (4):

C(S; �)=




��=0; x∈V

n ·∇�=0; x∈S

an ·∇�+ b�= c; x∈@V\S

(6)

The free-surface �ow problem is equivalent to the optimal shape design problem

min
S

{E(S; �) :C(S; �)} (7)

i.e. minimize (5) over all S, subject to the constraint that � satis�es (6). Because the boundary
value problem (6) associates a unique � with each free boundary S, it is convenient to use
the notation E(S) for E(S; �) with � from (6).
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3. ADJOINT OPTIMIZATION METHOD

To describe the adjoint optimization method for (7), we consider a domain V with free
boundary S and a perturbed domain V�� with free boundary

S��= {x+ ��(x) n(x) :x∈S} (8)

where � is a smooth function on S, independent of �. Following Reference [17], V and
V�� are embedded in a bounded set E and it is assumed that a solution of the constraint
can be extended smoothly beyond the boundary, so that it is well de�ned in E. A func-
tion grad E(S) :S �→R then exists, with the property that the value of the cost functional
corresponding to the modi�ed free boundary can be expanded as

E(S��)=E(S) + �
∫
S

�(x) grad E(S)(x) dx+O(�2) (9)

for all suitable functions �. This function grad E(S) is called the gradient of the cost func-
tional with respect to the free boundary. If the gradient is available, improvement of the free
boundary is straightforward. The adjoint optimization method explicitly determines the gradi-
ent of the cost functional by means of the solution of a dual problem. Omitting details for
succinctness, we state that the gradient associated with (7) is given by

grad E(S)=−� nn: ∇∇�−
d−1∑
j=1
tj ·∇(� tj ·∇�)− p2

2R
− p Fr−2n ·ed (10)

with �(x) the solution of the dual problem

��=0; x∈V (11a)

n ·∇�=
d−1∑
j=1
tj ·∇(ptj ·∇�); x∈S (11b)

an ·∇�+ b�=0; x∈@V\S (11c)

In (10) and (11), tj are orthogonal unit tangent vectors to S, ed is the vertical unit vector
and R(x) is the radius of curvature (d=2) or mean radius of curvature (d=3).
If � in (9) is set to a small positive number, then �=−grad E(S) reduces the cost functional

and thus improves the free-boundary position. The steady free-surface-�ow problem (7) can
therefore be solved by repeating the following operations:

(A1) For given S, solve � from (6).
(A2) Solve � from (11).
(A3) Determine �=−grad E(S) from (10).
(A4) Choose a step size �¿0 and adjust S to S��.

The iterative process (A1)–(A4) is called the adjoint optimization method.
The actual free-boundary S∗ yields grad E(S∗)=0. However, grad E(S∗)=0 only ensures

that a local minimum is attained. If the cost functional is non-convex, then multiple local
minima can occur. The actual solution to the steady free-surface �ow problem is the global
minimum. Because the dynamic condition (3b) implies that the cost functional vanishes for
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the actual solution, the correct minimum is identi�able. If the cost functional is indeed non-
convex, the adjoint optimization method must be provided with a su�ciently accurate initial
approximation to the solution, for instance, a prolongated coarse-grid approximation.

4. CONVERGENCE AND PRECONDITIONING

The convergence behaviour of the adjoint method can be conveniently examined by means
of Fourier analysis; see Reference [18]. We consider the typical case of a two-dimensional
uniform horizontal �ow in a channel V∗= {(x; y)∈R× [−1; 0]}. The boundary S∗= {y=0}
is the free boundary and {y=−1} is a rigid, impermeable boundary. The potential �∗= x
then satis�es (7) and grad E(S∗)=0, i.e. S∗ is the optimal free boundary.
Next, we consider the perturbed boundary S∗

�� , with �(x)= �̂(k) exp(ikx) a Fourier mode.
The gradient at S∗

�� reads grad E(S
∗
�� )(x)= � Ĥ (k) �̂(k) exp(ikx), with

Ĥ (k)= (Fr−2 − |k|= tanh |k|)2 (12)

An important property of (12) is that for subcritical �ows (Fr¡1), there is a wave number
k∗ such that Ĥ (k∗)=0. This mode corresponds to a steady surface gravity wave (see, e.g.
References [15, 16]). For supercritical �ows (Fr¿1), such a gravity wave does not occur.
One iteration of the adjoint method replaces �� by ��−� grad E(S∗

�� ). Fourier analysis yields
that to ensure stability, � must satisfy |1− �Ĥ (k)|61 for all k. If the optimization problem is
solved numerically on a grid with mesh width h, only wave numbers k∈[−�=h; �=h] appear.
As h→ 0, Ĥ attains its maximum in [−�=h; �=h] for |k|=�=h. The asymptotic behaviour
of Ĥ (�=h)=O(h−2) as h→ 0. Therefore, � must be O(h2) to maintain stability. However, the
modes for which Ĥ =O(1) then converge as |1−O(h2)|, so that the convergence behaviour
of the adjoint method deteriorates with decreasing mesh width.
This mesh-width dependence of � can be removed through preconditioning; see also Refer-

ence [19]. The mesh-width dependence is caused by the O(k2) behaviour of (12) for large k.
This implies that oscillatory errors in the boundary position contribute disproportionally to the
gradient. The aim of preconditioning is to restore the relation between the boundary adjustment
and the error in the boundary position.
An accurate approximation to the error in the free-boundary can be recovered from the

gradient by solving

P�=grad E(S∗
�� ) (13)

where P is any convenient operator of which the Fourier symbol resembles Ĥ . If the adjoint
method uses � instead of the gradient to displace the boundary, then the corresponding stability
condition reads |1−� Ĥ (k)=P̂(k)|61. Therefore, if P̂ satis�es P̂¿Ĥ for all k, then � can be
set to 1 and the mesh-width dependence is avoided. It is important that the numerical methods
for solving (13) do not reintroduce the mesh-width dependence. In general, preconditioners
can be constructed for which e�cient solution methods, e.g. multigrid methods [20, 21], are
available.
An operator of which the Fourier symbol resembles Ĥ for large k is

PH�=(Fr−2−1)2�− @
2�
@t2

(14)
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where @=@t denotes the tangential derivative along the free boundary. The Fourier symbol of
PH is P̂H (k)= (Fr−2 − 1)2 + k2. For small k a suitable operator is

PL�=(Fr−2−1)2
(
�+

2− 2�
k2∗

@2�
@t2

+
1− �
k 4∗

@4�
@t4

)
(15)

with � a small positive constant, which ensures stability of the operator PL. The Fourier sym-
bol of PL is given by P̂L(k)= (Fr−2−1)2(1−(2−2�)(k=k∗)2+(1−�)(k=k∗)4). For supercritical
�ows, P̂H is an accurate approximation to Ĥ for all k and the adjustment of the free-
boundary can be obtained from (13) and (14). For subcritical �ows, P̂H fails for small k and
(13)–(15) should be used.

5. NUMERICAL EXPERIMENTS

The preconditioned adjoint optimization method is tested for 2D sub- and super-critical �ow
over and obstacle in a channel at Fr =0:43 and 2:05. The �uid depth is assigned as reference
length. The geometry of the obstacle is

y(x)=−1+ 27
4
H
L3
x(x − L)2; 06x6L (16)

with H and L the (non-dimensionalized) height and length of the obstacle, respectively. We
choose H =0:2, L=2 for the subcritical test case and H =0:44 and L=4:4 for the supercritical
test case, in accordance with the experimental set-up from Reference [22].
The boundary value problems (7) and (11) are discretized with bilinear �nite elements.

The di�erential operators in the gradient (10) are discretized with central di�erences. The
resulting discrete optimization problem is unstable and displays odd=even oscillations. These
are simply removed by smoothing the gradient with the biharmonic operator. For subcritical
�ows (Fr¡1), a radiation condition must be imposed to avoid non-physical upstream waves.
The radiation condition is enforced by smoothing the gradient upstream of the obstacle with the
Laplace operator, and by applying the low wave number preconditioner PL only downstream.
The numerical experiments are performed on grids with horizontal mesh width h∈{L=72;

L=144} and vertical mesh width 1
24 . For the supercritical test case, the correction � is computed

using (13) and (14). For the subcritical test case, the upstream correction is determined in
the same manner and the downstream correction is taken as (�L+�H )=2, with �H from (13)
and (14), and �L from (13) and (15). The constant � in (15) is set to 0:025. In all cases the
step size is set to �=1.
For the supercritical test case, Figure 1 plots the norm of the correction after n iterations,

‖�n‖, versus the iteration counter. The correction in the adjoint method converges exponen-
tially, i.e. ‖�n‖=O(	n), for some constant 0¡	¡1. The norm of the error after n iterations,
En(x), can be bounded by

‖En‖6
∞∑
j=n

‖�j‖ (17)

This implies that the error converges exponentially as well. From Figure 1 we obtain 	≈0:5.
Observe that 	 is indeed independent of the mesh width. Figure 2 compares the computed
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Figure 1. Supercritical test case: convergence with H =0:44 (L=144 and L=72 coincide).

Figure 2. Supercritical test case: computed surface elevation with H =0:44; h=L=144 (solid line) and
measurements from Reference [22] (markers only).

surface elevation with measurements from Reference [22] for the supercritical test case. The
computed result agrees well with the measurements.
For the subcritical test case, ‖�n‖ is plotted versus n in Figure 3. Note that Figure 3 is a

log–log plot. In this case, the convergence behaviour of the correction is just algebraic, i.e.
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Figure 3. Subcritical test case: convergence with H =0:20.

Figure 4. Subcritical test case: computed surface elevation with H =0:20, h=L=144 (solid line) and
measurements from Reference [22] (markers only).

‖�n‖=O(n−
). From Figure 3 we obtain 
≈1:2, virtually independent of the mesh width.
Equation (17) then yields that the convergence behaviour of the error is O(n−0:2). The com-
puted surface elevation is compared with measurements from Reference [22] in Figure 4. The
amplitude of the trailing wave is overestimated, but the overestimation is not unusual; see,
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for instance, References [6, 23, 24]. The wavelength of the computed result agrees well with
the measurements.

6. DISCUSSION AND CONCLUSIONS

We examined the suitability of the adjoint shape-optimization method for solving steady
free-surface �ows. The free-surface potential �ow problem was rephrased as an equivalent
optimal-shape-design problem. We then presented the adjoint optimization method for solv-
ing the design problem. We showed that preconditioning is imperative to avoid mesh-width
dependence of the convergence behaviour of the adjoint method and we presented a suitable
preconditioning for the free-surface-�ow problem.
Numerical results were presented for two-dimensional �ow over an obstacle in a channel.

For the supercritical test case, the error in the boundary position converges exponentially. For
the subcritical test case, the convergence behaviour is just algebraic. The numerical results
con�rm that the convergence behaviour of the preconditioned adjoint method is independent
of the mesh width. For both test cases the computed results agree well with measurements.
For the considered test cases, the convergence behaviour of the adjoint method is similar to

that of time-integration methods (see also Reference [6]): the error converges exponentially
for supercritical �ows and algebraically for subcritical �ows. However, the convergence be-
haviour of the preconditioned adjoint method is independent of the mesh width, whereas the
convergence behaviour of the usual time-integration method for free-surface �ows deteriorates
with decreasing mesh width, due to a CFL-restriction on the allowable time step. Therefore,
the preconditioned adjoint method is more e�cient than the usual time-integration method.
On the other hand, the algebraic convergence behaviour of the adjoint method for subcritical
problems is less e�cient than the exponential convergence behaviour of the method proposed
in Reference [6].
We conjecture that the poor convergence behaviour of the adjoint method for subcritical

�ows is caused by Fourier modes in the neighbourhood of k∗: Because Ĥ (k)	1 for such
modes, their contribution to the gradient is negligible, although their contribution to the error
in the free-boundary position can be signi�cant. It is therefore anticipated that exponential
convergence behaviour can be recovered if the adjoint method is combined with a solution
method that eliminates the Fourier modes in the error in the neighbourhood of k∗.
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